МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «МУРМАНСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра строительства, энергетики и транспорта

Методические указания к контрольной работе студентов

по дисциплине:	Электрические системы и сети					
для направления подготовки (специальности)	13.03.02					
	код направления подготовки					
«Электроэнергетика и электротехника». Профиль – «Электроснабжение»						
наименование направления подготовки						
Для всех форм обучения						

код и наименование специальности, форма обучения

Составил: Васильева Елена Витальевна, доцент кафедры электроэнергетики Мурманского государственного технического университета

Методические указания рассмотрены и одобрены на заседании кафедры СЭиТ $01.07.\ 2021\ \text{г.,}$ протокол № 05

Методические указания составлены на основе ФГОС ВО по направлению подготовки 13.03.02 «Электроэнергетика и электротехника», утвержденного приказом Минобразования и науки РФ 03.09.2015 № 955, учебного плана в составе ОПОП по направлению подготовки/специальности 13.03.02 «Электроэнергетика и электротехника», профиль «Электроснабжение».

Процесс изучения дисциплины «Электроэнергетические системы и сети» направлен на формирование элементов следующих компетенций в соответствии с ФГОС ВО:

ОПК-3. Способность использовать методы анализа и моделирования электрических цепей

ПК-6. Способность рассчитывать режимы работы объектов профессиональной деятельности

В результате изучения дисциплины студент должен:

Знать: структуру современных электрических сетей; требования предъявляемые к электрическим сетям; режимы работы современных электрических сетей; способы регулирования напряжения в электрических сетях.

Уметь: выполнять выбор оборудования для современных электрических сетей; составлять математические модели основных элементов современных электрических сетей; выполнять расчёт параметров математических моделей схем замещения основных элементов современных электрических сетей; выполнять расчёт режимов современных электрических сетей на основе составленных математических моделей; выполнять расчёт потерь мощностей в электрических сетях, выполнять механический расчет проводов и тросов ВЛ.

Владеть: анализом результатов, получаемых в результате расчёта режимов работы электрических сетей.

ОГЛАВЛЕНИЕ

1 .ВВЕДЕНИЕ	4
2. МЕТОДИЧЕСКИЕ УКАЗАНИЯ К КОНТРОЛЬНОЙ РАБОТЕ	5
3. СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ	21

ВВЕДЕНИЕ

Контрольная работа это один из видов самостоятельной работы студентов, направленный на выявление уровня усвоения учебного материала по определенной теме дисциплины «Электрические системы и сети» за определенный период обучения. Студентам предлагается произвести расчет районной кольцевой электрической сети с тремя потребителями.

Методические указания к контрольной работе

Расчет режима замкнутой электрической сети проводится в три этапа.

На первом этапе рассчитывается потокораспределение в сети с нахождением точек потокораздела по сопротивлениям участков без учета потерь мощности в линиях. Если сечения линий на всех участках сети одинаковы, то расчеты первого этапа проводятся по «длинам» линий.

На втором этапе потоки мощности в линиях (в начале и в конце каждой) рассчитываются с учетом потерь мощности.

На третьем этапе проводится расчет уровней напряжения в узлах сети. При необходимости проводиться регулировка напряжения на трансформаторах подстанций. В качестве послеаварийных режимов следует рассмотреть режимы отключения ЛЭП на головных участках сети.

Схема рассчитываемой сети приводиться на рис. П.1. Мощности в узлах и расстояния между ними задаются студентам преподавателем индивидуально (см. приложение1)

Ниже приводиться пример расчета районной кольцевой электрической сети.

Требуется выбрать и рассчитать районную электрическую сеть для электроснабжения трех новых узлов нагрузки $S_{\rm H1}$, $S_{\rm H2}$ и $S_{\rm H3}$ от узловой подстанции с автотрансформаторами AT напряжением 220/110 кВ. Расчетные максимальные мощности узлов нагрузки и расположение их относительно центра питания указаны на рис. П.1. В состав каждого узла нагрузки входят потребители всех категорий по надежности электроснабжения. Число часов наибольшей нагрузки $T_{\rm max}$ =5500 ч.

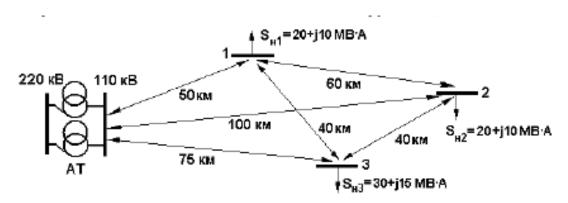
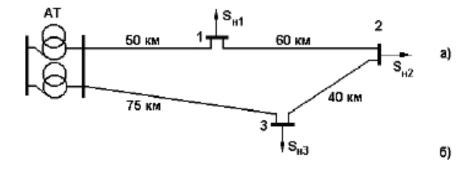



Рис. П.1. Расположение центра питания и узлов нагрузки

П.1. Составление схемы замещения

Первоначально составляется принципиальная схема кольцевой сети. Для расчета установившегося режима такая сеть разрезается по центру питания, разворачивается и представляется в виде сети с двухсторонним питанием от источников A и B (см.рис П2)

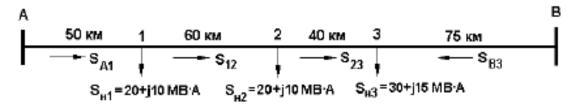


Рис. П.2. Принципиальная схема кольцевой сети (a) и ее представление сетью с двухсторонним питанием (δ)

П.2. Выбор напряжения электрической сети

Номинальное напряжение линии определяется ее длиной и активной мощностью, передаваемой по линии. Длины линий известны. Потокораспределение в сети найдем в предположении, что сеть однородная. Представим кольцевую схему сетью с двухсторонним питанием от источников A и B (рис. $\Pi.2,\delta$). В соответствии с выражением (4.33) мощность, протекающая по головному участку A1, составляет

$$S_{A1} = \sum_{i=1}^{3} P_{i} L_{iB} / L_{AB} + j \sum_{i=1}^{3} Q_{i} L_{iB} / L_{AB} =$$

 $=(20\cdot175+25\cdot115+15\cdot75)/225+j(10\cdot175+10\cdot115+15\cdot75)/225=$

$$=35.8 + j17.9 \text{ MB} \cdot \text{A}$$

Мощности остальных участков электрической сети найдем по первому закону Кирхгофа, предварительно задавшись направлениями мощностей (рис. $\Pi.2,6$),

$$S_{12}=S_{A1}-S_{H1}=35,8+j17,9-20-j10=15,8+j7,9 \text{ MB-A};$$

 $S_{23}=S_{12}-S_{H2}=15,8+j7,9-20-j10=-4,2-j2,1 \text{ MB-A};$
 $S_{B3}=-S_{23}+S_{H3}=4,2+j2,1+30+j15=34,2+j17,1 \text{ MB-A}.$

Видно, что на участке 23 мощность течет в направлении, противоположном предварительно выбранному направлению. Исходя из напряжений, имеющихся в центре питания, районная сеть может быть выполнена напряжением 110 или 220 кВ. Для выбора напряжения электрической сети воспользуемся формулой Стилла (9.1). Напряжение участка сети A1 составляет

$$U_{\text{HOM Al}} = 4,34 \sqrt{L + 0,016P} = 4,34 \sqrt{50 + 0,016 \cdot 35800} = 108,3 \text{ kB}.$$

Аналогично рассчитываем напряжения для других участков сети:

$$U_{\text{HOM }12}=76.8 \text{ kB}, U_{\text{HOM }23}=44.9 \text{ kB}, U_{\text{HOM }B3}=108.3 \text{ kB}.$$

Очевидно, что для проектируемой сети следует принять номинальное напряжение $U_{\text{ном}} = 110 \text{ kB}$.

П.3. Выбор и проверка сечений линий

Выбор сечений проводов воздушных линий электропередачи выполним по экономической плотности тока j_3 . Для этого определим полную мощность и ток, протекающие по каждой линии в нормальном режиме работы электрической сети.

Полная мощность и ток линии в линии А1 составляют

$$S_{A1} = \sqrt{P_{A1}^2 + Q_{A1}^2} = \sqrt{35.8^2 + 17.9^2} = 40 \text{ MB} \cdot \text{A},$$

$$I_{A1}=S_{A1}\cdot 10^3/\sqrt{3}\ U_{\text{HOM}}\ 40\cdot 10^3/1,73\cdot 110=210\ \text{A}.$$

Для других линий электрической сети:

- S₁₂=17,7 MB·A, I₁₂=93 A;
- S₃₂=4,7 MB·A, I₃₂=25 A;
- S_{B3}=38,2 MB·A, I_{B3}=200 A.

В соответствии с табл. 9.2 при $T_{\text{max}} > 5000$ ч экономическая плотность тока $j_2 = 1,0 \text{ A/мм}^2$. Экономические сечения каждой линии составляют:

- $F_{A1}=I_{A1}/j_0=210/1=210 \text{ mm}^2$;
- $F_{12}=93 \text{ mm}^2$;
- $F_{32}=25 \text{ mm}^2$;
- F_{B3}=200 mm².

Полученные сечения округляем до ближайших стандартных сечений и принимаем для линий сталеалюминиевые провода следующих марок:

- для линий A1 и B3 AC185;
- для линии 12 AC95:
- для линии 32 AC25.

Выполним проверку выбранных сечений по техническим ограничениям. Для воздушных линий напряжением 110 кВ минимальное сечение по условиям потерь на корону составляет 70 мм². Следовательно, для линии 32 следует принять провод марки АС70.

Условию механической прочности (9.13) удовлетворяют все выбранные сечения, поскольку минимальное по механической прочности сечение сталеалюминиевых проводов составляет 35 мм².

Согласно [1] допустимые длительные токи для выбранных сечений имеют следующие значения:

- I_n=265 A (AC70);
- I_n=330 A (AC95);
- I_z=510A (AC185).

Для проверки выбранных сечений по допустимому нагреву (допустимому длительному току) рассмотрим в соответствии с рекомендациями п. 9.3 два расчетных режима:

- аварийное или плановое отключение головного участка A1;
- аварийное или плановое отключение головного участка В3.

При отключении участка A1 полные мощности и токи, протекающие по оставшимся в работе линиям, составляют

$$S_{B3} = S_{H1} + S_{H2} + S_{H3} =$$

$$= \sqrt{(20 + 20 + 30)^2 + (10 + 10 + 15)^2} = 78,3 \text{ MB-A};$$

$$S_{32} = S_{H1} + S_{H2} = 44,8 \text{ MB-A};$$

$$S_{21} = S_{H1} = 22,4 \text{ MB-A};$$

$$I_{B3} = S_{A3} \cdot 10^3 / \sqrt{3} U_{HOM} = 78,3 \cdot 10^3 / 1,73 \cdot 110 = 411 \text{ A} < I_{\pi} = 510 \text{ A};$$

$$I_{32} = 235 \text{ A} < I_{\pi} = 265 \text{ A};$$

$$I_{21} = 118 \text{ A} < I_{\pi} = 330 \text{ A}.$$

При отключении головного участка В3 полные мощности и токи, протекающие по оставшимся в работе линиям, составляют

$$S_{A1}=S_{H1}+S_{H2}+S_{H3}=78,3 \text{ MB-A};$$

 $S_{12}=S_{H2}+S_{H3}=55,9 \text{ MB-A};$
 $S_{23}=S_{H3}=33,5 \text{ MB-A};$
 $I_{A1}=411 \text{ A} < I_{\pi}=510 \text{ A};$
 $I_{12}=294 \text{ A} < I_{\pi}=330 \text{ A};$

$$I_{23}=176 \text{ A} < I_n=265 \text{ A}.$$

Все выбранные сечения удовлетворяют условию допустимого нагрева длительным током.

Параметры воздушных линий электропередачи с проводами выбранных сечений занесены в табл. П.1.

Параметры r_0 , x_0 , и b_0 приняты в соответствии со справочными данными. Параметры R, X и B рассчитаны по выражениям (2.3), (2.7) и (2.11) соответственно. Зарядная мощность линий рассчитана по выражению (2.12)

Таблица П.1

Ли-	Про-	r_0 ,	x_0 ,	$b_0 10^{-6}$,	L,	R,	Χ,	B.10-6,	Qc,
ния	вод	Ом/км	Ом/км	См/км	км	Ом	Ом	См	Мвар
AI	AC185	0,16	0,41	2,75	50	8	20,5	138	1,67
12	AC95	0,31	0,43	2,61	60	18,6	17,2	157	1,9
23	AC70	0,43	0,44	2,55	40	17,2	17,6	102	1,23
B3	AC185	0,16	0,41	2,75	75	12	30,8	206	2,49

$$Q_{cA1}=U_{HOM}^2B=110^2\cdot138\cdot10^{-6}=1,67$$
 Мвар;
 $Q_{c12}=1,9$ Мвар;
 $Q_{c23}=1,23$ Мвар;
 $Q_{cB3}=2,49$ Мвар.

П.4. Выбор трансформаторов

В соответствии с исходными данными в состав нагрузок S_{nl} , S_{n2} и S_{n3} входят потребители всех категорий по надежности электроснабжения. Поэтому на каждой подстанции принимаем к установке 2 трансформатора. Мощность трансформаторов на подстанциях выбираем по выражению (9.41) при k_n =1,4

$$S_{\text{T HOM}} \geq S_{\text{H}}/1,4$$
.

Для потребителей с одинаковыми нагрузками $S_{nl}=S_{n2}=22,4$ MB·A номинальные мощности трансформаторов составят

$$S_{\text{T HOM}} \ge 22,4/1,4=15,7 \text{ MB-A}.$$

Принимаем к установке трансформаторы типа ТДН-16000/110.

Для потребителя с нагрузкой S_{n3} =33,5 MB·A номинальная мощность одного трансформатора составит

$$S_{\text{T HOM}} \ge 33,5/1,4 = 23,5 \text{ MB-A}.$$

Принимаем к установке 2 трансформатора типа ТРДН-25000/110.

Справочные и расчетные параметры выбранных трансформаторов занесем в табл. П2.

Таблица П.2.

Трансформатор	S _{тиом} , кВ∙А	<i>U</i> _{ви} , кВ			ΔP_{κ} , $\kappa B_{\rm T}$			Δ <i>Q</i> _x , квар		
ТДН-16000/110	16000	115	10,5	18	85	10,5	0,7	112	4,4	86,8
ТРДН-25000/110	25000	115	11	25	120	10,5	0,65	163	2,5	55,5

Параметры $S_{\tau \text{ ном}}$, $U_{\text{ви}}$, $U_{\text{ни}}$, ΔP_{x} , $\Delta P_{\text{к}}$, $u_{\text{к}}$ и I_{x} приняты в соответствии со справочными данными. Параметры R_{τ} , X_{τ} и ΔQ_{x} рассчитаны по выражениям (2.19), (2.22) и (2.26) соответственно.

Для трансформатора ТДН-16000/110

$$R_{\rm T} = \Delta P_{\rm K} U_{\rm gri}^2 10^3 / S_{\rm THOM}^2 = 85 \cdot 115^2 \cdot 10^3 / 16000^2 = 4,4 {\rm Om};$$
 $X_{\rm T} = u_{\rm K} \% U_{\rm BH}^2 10^3 / 100 S_{\rm THOM} = 10,5 \cdot 115^2 \cdot 10^3 / 100 \cdot 16000 = 86,8 {\rm Om};$
 $\Delta Q_{\rm X} = I_{\rm X} \% S_{\rm THOM} / 100 = 0,7 \cdot 16000 / 100 = 112 {\rm KBap}.$

Для трансформатора ТРДН-25000/110:

- R_T=2.5 O_M;
- X_T=55,5 Om;
- ∆Q_x=163 квар.

Отметим, что для трансформатора ТРДН-25000/110 с расщепленными обмотками низшего напряжения сопротивления R_{τ} и X_{τ} определены для случая, когда эти расщепленные обмотки работают параллельно. В случае раздельной работы этих обмоток сопротивление каждой обмотки, в соответствии с (2.31), будет в 2 раза больше R_{τ} '= R_{τ} "= $2R_{\tau}$, X_{τ} "= X_{τ} "= $2X_{\tau}$.

После выбора номинального напряжения сети, сечений проводов воздушных линий и трансформаторов на подстанциях принципиальная схема электрической сети будет иметь вид, показанный на рис. П.3.

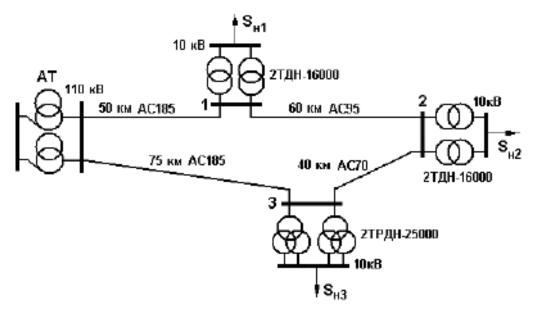


Рис. П.3. Принципиальная схема электрической сети

П.5. Определение расчетных нагрузок узлов

Схема замещения 1-го узла нагрузки электрической сети, приведенной на рис. П.3, имеет вид, показанный на рис. П.4.

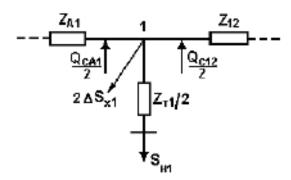


Рис. П.4. Схема замещения 1-го узла электрической сети

Расчетная нагрузка этого узла в соответствии с выражениями (4.1), (2.29,a) и (2.30,a) составит

$$P_1 = P_{H1} + 2\Delta P_{X1} + \Delta P_{K1} S_{H1}^2 / 2S_{THOM}^2 =$$

$$= 20 + 2 \cdot 0,018 + 0,085 \cdot 22,4^2 / 2 \cdot 16^2 = 20,12 \text{ MBT};$$

$$Q_1 = Q_{H1} + 2\Delta Q_{X1} + u_K \% S^2 / 2 \cdot 100 S_{THOM} - (Q_{CA1} + Q_{C12}) / 2 =$$

$$= 10 + 2 \cdot 0,112 + 10,5 \cdot 22,4^2 / 2 \cdot 100 \cdot 16 - (1,67 + 1,9) / 2 = 10,085 \text{ MBap}.$$

Расчетные нагрузки узлов 2 и 3 определяются аналогично:

- P₂=20,12 MBT; Q₂=10,305 MBap;
- P₃=30,16 MBT; Q₃=15,82 MBap.

После определения расчетных нагрузок узлов 1, 2 и 3 схема замещения электрической сети будет иметь вид, показанный на рис. П.5.

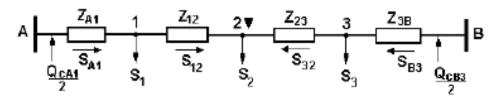


Рис. П.5. Схема замещения электрической сети

П.6. Расчет установившегося режима кольцевой сети

В результате расчета установившегося режима электрической сети определяются:

- точное потокораспределение в сети;
- напряжения в узлах сети для оценки качества напряжения и необходимости его регулирования.

Предварительное потокораспределение в сети найдем без учета потерь мощности. Для определения мощностей, протекающих по головным участкам A1 и B3, воспользуемся выражением (4.29)

$$S_{A1} = (S_1 Z_{1B}^* + S_2 Z_{2B}^* + S_3 Z_{3B}^*)/Z_{AB}^* =$$

$$= ((20,12+j10,085)(47,8-j65,6) + (20,12+j10,305)(29,2-j48,4) +$$

$$+ (30,16+j15,82)(12-j30,8))/(55,8-j86,1) = 37,27+j17,18 \text{ MB·A};$$

$$S_{B3} = (S_3 Z_{3A}^* + S_2 Z_{2A}^* + S_1 Z_{1A}^*)/Z_{AB}^* =$$

$$= ((30,16+j15,82)(43,8-j55,3) + (20,12+j10,305)(26,6-j37,7) +$$

$$+ (20,12+j10,085)(8-j20,5))/(55,8-j86,1) = 33,13+j19,03 \text{ MB·A}.$$

Для проверки правильности выполненного расчета проверим условие

$$S_{A1}+S_{B3}=S_1+S_2+S_3$$
.

Подставляя численные значения, получим

$$S_{A1}+S_{B3}=37,27+j17,18+33,13+j19,03=70,4+j36,21$$
 MB·A;
 $S_1+S_2+S_3=20,12+j10,085+20,12+j10,305+30,16+j15,82=$
 $=70,4+j36,21$ MB·A.

Условие выполняется, следовательно, расчет мощностей головных участков выполнен правильно.

Мощности остальных участков найдем по первому закону Кирхгофа

$$S_{12}=S_{A1}-S_1=(37,27+j17,18)-(20,12+j10,085)=17,15+j7,095 \text{ MB-A};$$

 $S_{12}=S_{B3}-S_3=(33,13+j19,03)-(30,16+j15,82)=2,97+j32,1 \text{ MB-A}.$

Видно, что узлом потокораздела является узел 2, поскольку к этому узлу мощности притекают с разных сторон. Узел потокораздела обозначен на схеме замешения значком ▼.

В результате выполненного расчета кольцевая сеть условно делится по узлу 2 на две разомкнутые схемы (рис. П.6).

Расчет двух разомкнутых схем выполним в соответствии с алгоритмом, изложенным в п. 4.4. Этот расчет включает в себя два этапа. На первом этапе определяем уточненное потокораспределение в сети. Расчет ведем при напряжении сети, равном номинальному $U_{\text{ном}}=110 \text{ кB}$. Рассмотрим подробно расчет левой части схемы рис. П.6.

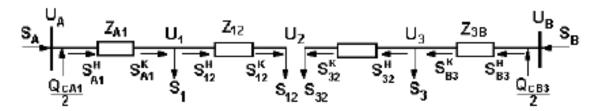


Рис. П.б. Деление кольцевой схемы на две разомкнутые схемы

Мощность в конце участка 12

$$S_{12}^{\kappa} = S_{12} = 17,15 + j7,095 \text{ MB-A}.$$

Потери мощности в линии 12 в соответствии с выражениями (4.11) составляют

$$\Delta P_{12} = (S_{12}^{\kappa})^2 R_{12} / U_{now}^2 = (17,15^2 + 7,095^2) 18,6/110^2 = 0,53 \text{ MBT};$$

 $\Delta Q_{12} = (S_{12}^{\kappa})^2 X_{12} / U_{now}^2 = (17,15^2 + 7,095^2) 17,2/110^2 = 0,49 \text{ MBap}.$

Мощность в начале линии 12 составляет

$$S_{12}^{\text{H}} = S_{12}^{\text{K}} + \Delta S_{12} = 17,15 + j7,095 + 0,53 + j0,49 = 17,68 + j7,585 \text{ MB-A}.$$

Мощность в конце линии A1 определится по первому закону Кирхгофа

$$S_{A1}^{\kappa} = S_{12}^{\kappa} + S_{1} = 17,68 + j7,585 + 20,12 + j10,085 = 37,8 + j17,67 \text{ MB-A}.$$

Потери мощности в линии А1 составляют

$$\Delta P_{A1} = (S_{A1}^{\kappa})^2 R_{A1} / U_{\text{Hom}}^2 = (37.8^2 + 17.67^2) 8 / 110^2 = 1,15 \text{ MBT};$$

 $\Delta Q_{A1} = (S_{A1}^{\kappa})^2 X_{A1} / U_{\text{Hom}}^2 = (37.8^2 + 17.67^2) 20.5 / 110^2 = 29.5 \text{ MBap}.$

Мощность в начале линии А1 составляет

$$S_{A1}^{\text{H}} = S_{A1}^{\text{K}} + \Delta S_{A1} = 37,8+j10,96+1,15+j2,95=38,95+j13,91 \text{ MB-A}.$$

Мощность, требуемая от источника A, определяется по первому закону Кирхгофа

$$S_A = S_{A1}^{\text{H}} - jQ_{cA1}/2 = 38,95 + j13,91 - j1,67/2 = 38,95 + j13,075 \text{ MB}^{2}\text{A}.$$

Совершенно аналогично выполняется первый этап расчета для правой части схемы рис. П.6. Величины мощностей в соответствии с обозначениями, указанными на рис. П.6, составляют

$$S_{32}^{\kappa}=2,97+j3,21 \text{ MB'A};$$

 $S_{32}^{\kappa}=2,995+j3,24 \text{ MB'A};$
 $S_{B3}^{\kappa}=33,155+j19,06 \text{ MB'A};$
 $S_{B3}^{\kappa}=34,605+j12,78 \text{ MB'A};$
 $S_{R}=34,605+j11,535 \text{ MB'A}.$

На втором этапе расчета определяются напряжения в узлах сети. Пусть напряжение в центре питания (на узловой подстанции) в режиме наибольшей нагрузки составляет $U_A = U_B = 114$ кВ. Падение напряжения в линии A1 в соответствии с выражением (4.8) будет

$$\Delta U_{A1} = \Delta U_{A1} + j \delta U_{A1} =$$

$$= ((P_{A1}^{\text{H}} R_{A1} + Q_{A1}^{\text{H}} X_{A1}) + j(P_{A1}^{\text{H}} X_{A1} - Q_{A1}^{\text{H}} R_{A1})) / U_{A} =$$

$$= ((38.95 \cdot 8 + 13.91 \cdot 20.5) + j(38.95 \cdot 20.5 - 13.91 \cdot 8)) / 114 = 4.35 + j6.05 \text{ kB}.$$

Модуль напряжения в узле 1 составляет

$$U_1 = \sqrt{(U_A - \Delta U_{A1})^2 + \delta U_{A1}^2} = \sqrt{(114 - 4.35)^2 + 6.05^2} = 109.8 \text{ kB}.$$

Напряжение в узле 1 при учете только продольной составляющей падения напряжения составляет

$$U_1 = U_4 - \Delta U_{41} = 114 - 4.35 = 109.65 \text{ kB}.$$

Видно, что влияние поперечной составляющей падения напряжения в сети 110 кВ очень невелико (109,8 кВ≅109,65 кВ). В дальнейшем при расчете напряжений с целью упрощения будет учитываться только продольная составляющая падения напряжения, называемая потерей напряжения. Потеря напряжения в линии 12 составляет

$$\Delta U_{12} = (P_{12}^{\text{H}} R_{12} + Q_{12}^{\text{H}} X_{12})/U_1 =$$

= (17,68·18,6+7,585·17,2)/109,65=4,2 kB.

Напряжение в узле 2

$$U_2 = U_1 - \Delta U_{12} = 109,65 - 4,2 = 105,45 \text{ kB}.$$

Совершенно аналогично выполняется второй этап расчета для правой части схемы рис. П.б. Потери напряжения и величины напряжений в узлах в соответствии с обозначениями, указанными на схеме рис. П.б, составляют:

- ΔU_{B3}=7,1 κB;
- U₃=106,9 kB;
- ΔU₃₂=1,0 κB;
- U₂=105,9 kB.

Ограничимся в расчетах одной итерацией. Некоторое отличие напряжений узла 2, вычисленных для левой (U_2 =105,45 кВ) и правой (U_2 =105,9 кВ) частей схемы можно объяснить пренебрежением поперечной составляющей падения напряжения, а также ограничением расчетов одной итерацией. В дальнейших расчетах будем полагать, что напряжение в узле 2 составляет U_2 =105,45 кВ.

П.7. Расчет напряжений на вторичной обмотке трансформаторов

Напряжения на первичной обмотке трансформаторов U_1 , U_2 и U_3 определены при расчете установившегося режима электрической сети. Расчет напряжения на вторичной обмотке трансформаторов рассмотрим на примере узла 3, схема замещения которого приведена на рис. $\Pi.7$.

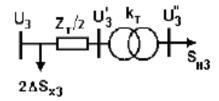


Рис. П.7. Схема замещения узла 3

Потеря напряжения в двух трансформаторах узла 3 составляет

$$\Delta U_{\tau 3} = (P_{\mu 3}R_{\tau} + Q_{\mu 3}X_{\tau})/2U_{\mu 0 M} = (30^{\circ}2.5 + 15^{\circ}55.5)/2^{\circ}110 = 4.1 \text{ kB}.$$

Напряжение на вторичной обмотке трансформаторов, приведенное к первичной обмотке,

$$U_3' = U_3 - \Delta U_{\tau 3} = 106,9 - 4,1 = 102,8 \text{ kB}.$$

Действительное напряжение на вторичной обмотке трансформаторов при номинальном коэффициенте трансформации

$$U_3''=U_3'/k_{\tau}=102,8.11/115=9,8 \text{ kB}.$$

Аналогичные расчеты выполним для узлов 1 и 2:

- ΔU_{τ1}=4,25 κB; U₁'=105,4 κB; U₁"=9,62 κB;
- ΔU₁₂=4,35 κB; U₂'=101,1 κB; U₂"=9,23 κB.

В соответствии с требованиями [1] в режиме наибольшей нагрузки напряжения U_1 ", U_2 " и U_3 " должны быть не ниже 10,5 кВ. Следовательно, на всех трех подстанциях необходимо регулировать напряжение.

П.8. Регулирование напряжения

Напряжения на первичной обмотке трансформаторов, вычисленные при расчете установившегося режима электрической сети, составляют:

- U₁=109,65 kB;
- U₂=105,45 kB;
- U₃=106,9 kB.

Напряжения на вторичной обмотке трансформаторов, приведенные к первичной обмотке, рассчитаны в предыдущем пункте и составляют:

- U₁'=105,4 κB;
- U₂'=101,1 κB;
- U₃′=102,8 кВ.

Напряжения на вторичной обмотке трансформаторов при положении РПН на нулевом ответвлении рассчитаны в предыдущем пункте и составляют:

- U₁"=9,62 кВ;
- U₂"=9,23 κB;
- U₃"=9,8 кВ.

Требуемые [1] напряжения на вторичных обмотках трансформаторов в режиме наибольшей нагрузки должны удовлетворять условиям

- U₁"₇>10,5 κB;
- U₂"_x>10,5 κB;
- U₃"₇>10,5 κB.

При номинальных коэффициентах трансформации $k_{\tau 1} = k_{\tau 2} = 115/10, 5 = 10,95$ и $k_{\tau 3} = 115/11 = 10,45$ эти условия не выполняются.

Выбранные выше трансформаторы (ТДН и ТРДН) имеют устройство РПН с диапазоном регулирования напряжения ±9°1,78%. Необходимо оценить достаточность диапазона регулирования напряжения для поддержания напряжений на вторичной обмотке трансформаторов на требуемом уровне.

Выбор регулировочных ответвлений РПН выполним для узла 2 с самым низким уровнем напряжения U_2 "=9,23 кВ. Для трансформаторов, установленных в этом узле, необходимо переключить РПН с нулевого ответвления на требуемое ответвление $U_{\text{отв }\tau}$, т.е. изменить номинальный коэффициент трансформации $k_{\tau 2}$ до требуемого значения $k_{\tau 2}$ τ , обеспечивающего на вторичной обмотке трансформаторов требуемое напряжение U_2 " $\tau \ge 10,5$ кВ. В соответствии с выражением (7.6) напряжение требуемого регулировочного ответвления

$$U_{\text{OTB},T} = U_2'U_{\text{HIP}}/U_2''_{\text{T}} = 101,1'10,5 / 10,5 = 101,1 \text{ kB}.$$

Полученное напряжение требуемого регулировочного ответвления округляется до ближайшего *i*-го стандартного значения, которое подбирается по выражению (7.8)

$$U_{\text{GTB i}} = U_{\text{BH}} + i \cdot 1,78 \cdot U_{\text{BH}} / 100 = 115 + i \cdot 1,78 \cdot 115 / 100 = 115 + i \cdot 2,047$$

или по табл. 7.2. Из последнего соотношения (или табл. 7.2) следует, что номер требуемого регулировочного ответвления i=-7, а стандартное напряжение этого ответвления

$$U_{\text{orn-7}}=115-7.2,047=100,67 \text{ kB}.$$

Действительное напряжение на вторичной обмотке трансформаторов после регулирования

$$U_{2\pi} = U_2' U_{yy} / U_{otb} = 7 = 101,1'10,5/100,67 = 10,54 \text{ kB} \ge 10,5 \text{ kB}.$$

Требование [1] для режима наибольшей нагрузки выполняется. Диапазон регулирования <u>+</u>9⁻¹,78% достаточен для поддержания на требуемом уровне напряжения на вторичной обмотке трансформаторов в узле 2.

Регулирование напряжения в узлах 1 и 3 выполняется аналогично. Для этих узлов диапазон регулирования напряжения <u>+</u>9·1,78% будет также достаточен, поскольку напряжения в этих узлах выше, чем в узле 2.

П.9. Оценка экономичности режима электрической сети

Экономичность режима электрической сети оценим по величине потерь мощности и электроэнергии.

Суммарные потери активной мощности в сети определятся как разность между активной мощностью, требуемой от источника питания, и активной мощностью нагрузок. Активная мощность, требуемая от источника питания, определена при расчете установившегося режима электрической сети и составляет

$$P=P_A+P_B=38,95+34,605=73,555$$
 MBT.

Суммарная активная мощность нагрузок согласно исходным данным составляет

$$P_{\text{HS}}=20+20+30=70 \text{ MBt}.$$

Суммарные потери активной мощности

$$\Delta P_{\Sigma} = P - P_{\mu \Sigma} = 73,555 - 70 = 3,555 \text{ MBT}.$$

Доля потерь от активной мощности, отпущенной потребителям, составляет

$$\Delta P_{\Sigma}\% = \Delta P_{\Sigma}100/P = 3.555 \cdot 100/73.555 = 4.8 \%$$
.

Доля потерь от потребляемой активной мощности

$$\Delta P_{\Sigma}\% = \Delta P_{\Sigma} 100/(P_{nI} + P_{n2} + P_{n3}) = 3,555 \cdot 100/70 = 5,1 \%$$
.

Суммарные потери активной мощности условно делятся на переменные ΔP_{Σ} " и постоянные ΔP_{Σ} ". Постоянные потери или потери в сердечниках трансформаторов в соответствии с табл. П.2 составляют

$$\Delta P_{\Sigma}$$
"=2 ΔP_{x1} +2 ΔP_{x2} +2 ΔP_{x3} =2·0,018+2·0,018+2·0,025=0,122 MBT.

Остальная часть суммарных потерь мощности — это переменные потери в активных сопротивлениях линий и трансформаторов

$$\Delta P_{\Sigma}' = \Delta P_{\Sigma} - \Delta P_{\Sigma}'' = 3,555 - 0,122 = 3,433 \text{ MBt.}$$

Видно, что основную часть суммарных потерь (96...97%) составляют переменные потери.

Годовые потери электроэнергии в соответствии с выражениями (8.7) и (8.1) составят

$$\Delta W_{\text{roa}} = \Delta P_{\Sigma}' \tau + \Delta P_{\Sigma}'' T_{\text{BKB}} = 3,433.4000 + 0,122.8760 = 18 \text{ тыс. MBт'ч.}$$

Число часов наибольших потерь в соответствии с эмпирической формулой (8.6)

$$\tau_{\text{max}} = (0.124 + T_{\text{max}} 10^{-4})^2 8760 = (0.124 + 5500 \cdot 10^{-4})^2 \cdot 8760 = 4000 \text{ y}.$$

Доля потерь от электроэнергии, отпущенной потребителям, составляет

$$\Delta W_{\text{rog}}\% = \Delta W_{\text{rog}} 100/(PT_{\text{max}}) = 18\cdot10^3\cdot100/(73,555\cdot5500) = 4,4\%$$
.

Приложение 1 Задание для контрольной работы.

№ вариан.	T _{max}	S1	S2	S3	L1	L2	L3
1	5500	25+i15	30+i20	15+i10			
2	5300	30+i14	20+i13	28+i20			
3	5200	23+i17	27+i20	33+i25			
4	5100	28+i21	25+i15	18+i14			
5	4900	24+i16	35+i25	21+i16			
6	4800	23+i16	25+i17	30+i22			
7	4700	33+i20	28+i21	19+i13			
8	5350	35+i24	17+i12	32+i27			
9	5200	37+i26	20+i14	28+i20			
10	5400	20+i15	28+i18	29+i20			

Расстояния между узлами взять самостоятельно со своей схемы, используя масштаб 1cm=10 км

Список рекомендуемой литературы

- 1. Быстрицкий Г.Ф. Основы энергетики. М.: КноРус, 2013. 278 с. ил.
- 2.Герасименко А.А. Передача и распределение электрической энергии. М.:КноРус,2015.-724 с. ил.
 - 3. Кудрин Б.И. Электроснабжение. М.: Академия, 2013.-672 с. ил.
 - 4. Кудрин Б.И. Электроснабжение. М.: Академия, 2013.-672 с. ил.
 - 5. Шаров Ю.В. Электроэнергетика. М.: Инфра-М, 2014.-384 с. ил.
- 6.Кудинов А.А. Тепловые электрические станции. Схемы и оборудование: Учебное пособие. М.:Инфра-М, 2015. 376 с. ил.
- 7. Грунтович Н.В. Монтаж, наладка и эксплуатация электрооборудования. М.: Инфра-М, 2013. 271 с. ил.
- 8.Анчарова Т.В. Электроснабжение и электрооборудование зданий и сооружений: Учебник. М.:Инфра-М, 2014. 416 с. ил.
- 9.Сибикин Ю.Д. Технология энергоснабжения: Учебник 3-е изд., перераб. и доп. М.:Форум, 2015. 352 с. ил.
- 10.Сибикин Ю.Д. Электрические подстанции. М.:РадиоСофт, 2014. 141 с. ил.
- 11.Нетрадиционные и возобновляемые источники энергии/ под ред. В.В. Денисова. М.:Феникс, 2015. 382 с. ил.
- 12.Шабад В.К. Электромеханические переходные процессы в электроэнергетических системах. М.:Академия, 2013. 193 с. ил.
- 13. Сибикин Ю.Д., Сибикин М.Ю. Нетрадиционные и возобновляемые источники энергии. М.:КноРус, 2014. 240 с. ил.
- 14. Важов В.Ф. Техника высоких напряжений: Учебник. — М.:Инфра-М, 2014. — 264 с. ил.
- 15. Ушаков В.Я. Электроэнергетические системы и сети. М.:Юрайт, 2014. 446 с. ил.
- 16.Климова Г.Н. Электроэнергетические системы и сети. Энергосбережение. 2-е изд. М.:Юрайт, 2014. 179 с. ил.
- 17. Бачаров Ю.Н. Техника высоких напряжений. –М.:Юрайт, 2014. 264 с. ил.
- 18.Хрущев Ю.В. Электроэнергетические системы и сети. Электрические переходные процессы. М.:Юрайт, 2014. 153 с. ил.
- 19. Исмагилов Ф.Р. Основные вопросы проектирования воздушных линий электропередач: Учебное пособие. М.:Машиностроение, 2015. 211 с. ил.
- $20.\Phi$ ролов Ю.М., Шелякин В.П. Основы электроснобжения. СПб.:Лань, 2013.-432 с. ил.
- 21.Почаевец В.С. Электрические подстанции: Учебник. М.:Маршрут, 2012.-492 с. ил.